
MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

10

Question Marks

1 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the two words
and includes one iterative structure and two selection
structures. An attempt has been made to check that all
the characters in the first word are in the second word,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that a selection structure is needed after all letter counts have been
compared to output a message saying it can be made from the letters in the
2nd word or that it can’t

2. Identifying that a loop is needed that repeats a number of times based on the

12

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

11

length of the first word // identifying that a loop is needed that repeats 26 times
// identifying that a loop is needed that repeats a number of times determined
by the number of unique characters in the first word

3. Identifying that the number of times a letter occurs in the first string needs to
be less than or equal to the number of times it occurs in the second string

4. Boolean (or equivalent) variable used to indicate if the first word can be
formed from the letters in the second word // array of suitable size to store the
count of each letter

Note that AO3 (design) points are for selecting appropriate techniques to use to solve
the problem, so should be credited whether the syntax of programming language
statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. (Suitable prompts asking user to enter the two words followed by) user inputs
being assigned to appropriate variables (R. if inside or after iterative
structure), two variables with appropriate data types created to store the two
words entered by the user

6. Iterative structure to look at each letter in first word has correct syntax and
start/end conditions // iterative structure to look at each letter in the alphabet
has correct syntax and start/end conditions

7. Correctly counts the number of times that a letter occurs in one of the words
8. Selection structure that compares the count of a letter in the first word with the

count of that letter in the second word A. incorrect counts A. incorrect
comparison operator

9. Correctly counts the number of times each letter in one of the two words
occurs

10. Program works correctly if the two words entered are the same
11. Program works correctly when first word contains more instances of a letter

than there are in the second word (i.e. says that it cannot be formed from the
second word)

12. Program works correctly for all word pairs consisting of just upper case letters

Alternative mark scheme
(based on removing an instance of a letter from the 2nd word each time it appears in
the 1st word)

1. Identifying that a selection structure is needed after all the letters that appear
in both words have been removed from the first word to output a message
saying it can be made from the letters in the second word or that it can’t

3. Identifying that a letter can be removed from the second word if it appears in
the first word

7. Selection structure that checks if letter in first word appears in the second
word

8. Removes a letter from the second word if it appears in the first word.
9. Sets indicator to false if a letter does not appear in the second word

1 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from question 01.1, including prompts on screen capture matching

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

12

those in code.
Code for question 05.1 must be sensible.

Screen captures showing:
• the string NINE being entered followed by the string ELEPHANTINE and then

a message displayed saying that the first word can be formed from the
second.

• the string NINE being entered followed by the word ELEPHANT and then a
message displayed saying that the first work cannot be formed from the
second.

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

16

Question Marks

2 1 All marks for AO3 (programming)

1. Creates a random number;

2. Selection structure with random number used in condition;

3. Selection structure with one message in then part and one message in else part
– one of the messages must be the original message “Sorry, you don’t know
how to ***.” and one must be the new message “Sorry, I don’t know
what *** means.”;
R. other messages R. if spacing incorrect I. case I. punctuation
A. answers that use two selection structures as long as they are equivalent to
using an if…then...else structure

4. Each message has probability of being displayed 50% of the time; A. any
suitable message A. answers with value between 0 and just less than 1is
generated where 0.5 is rounded incorrectly

Max 3 if code contains errors
Max 2 if both error messages could be displayed sometimes

4

2 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from question 2.1, including prompts on screen capture
matching those in code.
Code for question 2.1 must be sensible.

Screen captures showing the command eat being entered (I. any text after the
eat command) followed by one of the two messages – this should be done at
least twice and there must be evidence that both messages can be displayed;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

17

Question Marks

3 1 All marks for AO3 (programming)

1. Iterative structure to loop through each item in Items;
2. Selection structure inside iterative structure with valid syntax and correct

condition for selection structure that compares player’s ID (1001) /
Inventory with location of an item;

3. One added to appropriately-named variable used to count number of
objects in inventory; R. if not inside selection structure inside iterative
structure

4. Selection structure, after attempt at iterative structure, that compares count
of items in inventory (A. incorrect count) with the number 5 (A. alternative
logic e.g. > 4); R. if incorrect logic

5. Message inside attempt at selection structure from mark point 4 saying that
player can’t carry any more; A. selection structure in wrong place in code

6. If the number of items in the inventory is fewer than five then code added
does not prevent item from being added to inventory; Note for examiners:
this mark can only be awarded if mark points 1 and 4 have been awarded

7. If the number of items in the inventory is five (or more) then the item is not
added to the inventory, the item stays in its current location and the result
of getting the item is not executed; A. other values to five for number of
items in inventory based on incorrect answer for mark point 4

Max 6 marks if code contains errors

7

3 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from question 3.1, including prompts on screen capture
matching those in code.
Code for question 3.1 must be sensible.

Screen capture(s) showing that the red die and torch are picked up by the player
but not the book;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

18

Question Marks

4 1 All marks for AO3 (programming)

1. Creating a new subroutine called DropItem; R. other names for
subroutine I. case

2. Adding new option to the selection structure in PlayGame for the drop
command;

3. Call to DropItem inside the option added for mark point 2; R. if name
does not match name of created subroutine R. if parameter list for
subroutine call does not match parameter list for new subroutine

4. Parameter list for the new subroutine and contains Items, the item to drop
and the current location of the player; I. additional parameters that are not
needed A. alternatives to these parameters as long as evidence of attempt
to get them to be usable is in code eg passing Characters instead of
just the location of the player as long as some code to extract the location
is included in the new subroutine

The following all relate to the DropItem subroutine:

5. Gets the index of the item to drop;
6. Selection structure that checks if the item to drop does exist and results in

appropriate error message being displayed if it doesn’t;
7. Selection structure that checks if the item to drop is in the player’s inventory

and results in appropriate error message being displayed if it isn’t;
8. Selection structure that checks if item to drop is fragile;
9. If item is in player’s inventory and is fragile an appropriate message is

displayed; A. incorrect conditions for mark points 7 and/or 8
10. If item is in player’s inventory and is fragile then item is removed from

Items // if item is in player’s inventory and is fragile then the location of
the item is changed to a location that does not exist; A. incorrect conditions
for mark points 7 and/or 8

11. Location of item to drop is changed to the current location if it is in the
player’s inventory and is not fragile and an appropriate message is
displayed; A. incorrect conditions for mark points 7 and/or 8 A. no attempts
for mark points 7 and/or 8

12. Logic for mark points 6 –11 is correct, program won’t display any incorrect
messages and does not try to access position -1 in Items if item does not
exist;

Max 11 if code contains errors

12

4 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from question 4.1, including prompts on screen capture
matching those in code.
Code for question 4.1 must be sensible.

Screen capture(s) showing that the player’s inventory contains just the flask and
that the contents of the room are the apple, torch and red die;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2019

19

Question Marks

5 1 All marks for AO3 (programming)

1. Code modified to roll the player’s die three times;
2. Appropriate data structure(s) / variables to store the results of the player’s

dice rolls;
3. Code identifies the highest/smallest of the three numbers rolled by the

player;
4. Code multiplies one of the results of the player’s dice rolls by 100, another

by 10 and adds the results of these two multiplications to the result of the
other die roll;

5. Correct calculation of the player’s score;
6. Code modified to roll the other character’s die three times;
7. Correct calculation of the other character’s score;
8. All expected messages, including messages showing the result of each die

roll, displayed under the expected circumstances

Max 7 if code contains errors or if other parts of the subroutine no longer work
correctly

8

5 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from question 5.1, including prompts on screen capture
matching those in code.
Code for question 5.1 must be sensible.

Screen capture(s) showing two tests with correct scores calculated for both player
and other character and correct result displayed; A. missing results of individual
die rolls not displayed

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

13

Question Marks

6 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
numbers, at least one iterative structure and one
selection structure and suitable data structure(s) to store
the numbers entered and the frequencies. An attempt
has been made to determine the modal frequency,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

12

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

14

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that data structure(s) are needed to store ten frequencies
2. Identifying that a loop is needed that repeats a number of times determined by

the first number entered by the user
3. Identifying that a Boolean (or equivalent) variable is needed to store if the

data was multimodal
4. Selection structure that either outputs a calculated number (I. incorrectly

calculated) or a message saying "Data was multimodal" (A. any
suitable message)

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution
works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. Suitable prompts asking user to enter the number of digits followed by user
inputs being assigned to appropriate variable R. if inside or after iterative
structure

6. Correct number of numeric digits obtained from the user
7. Adds one to correct frequency count R. if only works for one digit
8. Selection structure, inside iterative structure, that correctly compares

calculated frequency (I. incorrect frequency) of a digit with the highest
frequency found so far

9. Boolean (or equivalent) variable that is used to indicate if data is multimodal is
set to true under correct circumstances

10. Boolean (or equivalent) variable that is used to indicate if data is multimodal is
set to false when new higher frequency is found

11. Program works correctly if the data has more than one modal value A. any
sensible message

12. Program displays the correct frequency of the modal value under all
circumstances and does not say data is multimodal when it is not I. frequency
being displayed when data is multimodal

Max 11 if code contains any errors

6 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 06.1, including prompts on screen capture matching
those in code.
Code for 06.1 must be sensible.

Screen captures showing:

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

15

• the number 6 being entered followed by the numbers 0, 1, 2, 1, 2 and 1 (I.
order of these six numbers) and then a message displayed saying 3

• the number 5 being entered followed by the numbers 0, 1, 2, 2 and 1 (I. order
of these five numbers) and then a message displayed saying that the data is
multimodal.

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

19

Question Marks

7 1 All marks for AO3 (programming)

1. Indefinite iterative structure contains code that gets the name from the user;
2. One correct condition;
3. Both correct conditions and correct logic for the iterative structure;
4. Displays error message if no name is entered // displays error message if a name

that has already been used is entered;
5. Displays error message under all correct circumstances and only under correct

circumstances;

Max 4 if code contains errors

5

7 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 7.1, including prompts on screen capture matching those in
code.
Code for 7.1 must be sensible.

Screen captures showing error message(s) being shown for the two invalid names
and then showing the message asking for the starting balance when a valid name is
entered;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

20

Question Marks

8 1 All marks for AO3 (programming)

1. Creating a new class called AffluentHousehold; R. other names for class I.
case and minor typos

2. New class inherits from Household;
3. Constructor created that overrides base class constructor with call made to base

class constructor; R. if incorrect parameters
4. Sets the value of ChanceEatOutPerDay to 1; R. if before call to base class

constructor R. If not after attempt at call to base class constructor

The following all relate to the AddHousehold method:

5. Selection structure with correct condition;
6. Creates an AffluentHousehold object; R. if it also creates a household
7. Creates an AffluentHousehold under the correct circumstances and a
Household under the correct circumstances; R. if new household not added to
Households

Max 6 if code contains errors

7

8 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 8.1, including prompts on screen capture matching those in
code.
Code for 8.1 must be sensible.

Screen capture(s) showing that households with an X value less than 100 have an
eat out percentage of 1;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

21

Question Marks

9 1 All marks for AO3 (programming)

Marks for changes to the Simulation class:

1. Two extra options displayed on the modify company menu using appropriate
messages;

2. Selection structures for the new menu options with appropriate condition(s);

3. Gets the user to enter the interest rate when getting a loan and the amount to
pay back when paying back under the appropriate circumstances; A. done in
appropriate places in the Company class;

4. Calls to appropriate methods in Company class in the selection structures;

Marks for changes to the Company class:

5. Attributes of appropriate data types created for LoanBalance and
InterestRate;

6. Correct calculation of daily interest payment and new balance in
ProcessDayEnd; R. if the balance is changed before previous balance
concatenated with Details

7. Selection structure to check if LoanBalance is 0 when user chooses to get a
loan; A. check for less than or equal to 0

8. Balance, LoanBalance and InterestRate set to correct values in the
selection structure;

9. LoanBalance and Balance changed by the correct amount when user
chooses to pay back part of the loan;

10. All attributes in Company are only accessed and modified by methods in
Company; R. if no attempt to access or modify the attributes used when getting
or paying back a loan.

Max 9 marks if code contains errors

10

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

22

Question Marks

9 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 9.1, including prompts on screen capture matching those in
code.
Code for 9.1 must be sensible.

Screen capture(s) showing that the balance for AQA Burgers is approximately
92 000; Note for examiners: due to random numbers in simulation exact balance
can vary.

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

23

Question Marks

10 1 All marks for AO3 (programming)

1. Created new method called GetOrderedListOfOutlets; R. other names
for method I. case and minor typos

2. Method returns a list/array;
3. Outlet 0 is added to the route first;
4. Iterative structure that repeats until all outlets have been added to the route;
5. Has variable that is used to store shortest distance found between two nodes so

far and a variable to store which outlet results in the shortest distance;
6. Iterative structure that looks at each outlet for which distance from previous

outlet in route needs to be calculated; A. looks at all outlet except previous
outlet

7. No outlet can appear more than once in route created; R. if adds or two or fewer
outlets to the list only R. if no attempt to check if outlet has already been added
or equivalent

8. Route created contains all the company’s outlets;
9. Shortest distance between two nodes variable set to suitable starting value and

reset after each outlet (except last one) is added to route;
10.GetOrderedListOfOutlets implements the algorithm described in Figure

6 in the question;
11. Modified CalculateDeliveryCost so that it calls

GetOrderedListOfOutlets instead of GetListOfOutlets; A.
alternative identifier used as long as match that used for mark point 1

Max 10 if code contains errors or if other parts of the subroutine no longer work
correctly

11

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2020

24

Question Marks

10 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 10.1, including prompts on screen capture matching those
in code.
Code for 10.1 must be sensible.

Screen capture(s) showing that the delivery cost for AQA Burgers is 22.10446;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

12

Question Marks

11 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
number, has at least one iterative structure and one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to determine if a number is a Harshad number,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

12

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

13

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that integer division is needed when calculating the sum of the digits
// identifying that a character in string needs to be converted to a number data
type when calculating the sum of the digits

2. Identifying that a loop is needed that repeats a number of times determined by
the number entered by the user // identifying that a loop is needed that repeats
until the nth Harshad number is found

3. Identifying that nested iteration is needed
4. Selection structure that compares sum of digits (I. incorrectly calculated) with a

number

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. Suitable prompt asking user to enter a number followed by user input being
assigned to appropriate variable

6. Iterative structure that repeats a number of times sufficient to find all the digits of
a number

7. Calculates the sum of all the digits of a number
8. Calculates the remainder from dividing a number by its sum of digits A. incorrect

calculation for sum of digits
9. Resets the variable used to store the sum of digits to 0 in an appropriate place
10. Program works correctly for the first nine Harshad numbers (1 to 9)
11. Program will display 10/12/18 if the user enters the number 10/11/12
12. Program displays the correct value for the nth Harshad number under all

circumstances I. displaying Harshad numbers that appear before the nth
Harshad number

Alternative mark scheme
This mark scheme is to be used if solution uses a recursive subroutine to calculate
the sum of the digits.

3. Identifying that a recursive subroutine is needed to calculate the sum of the digits.
6. Recursive subroutine has an appropriate base case.
9. Sets the variable used to store the sum of digits to the result returned by the call
to the recursive subroutine in an appropriate place.

Max 11 if any errors.

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

14

11 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 11.1, including prompts on screen capture matching those
in code.
Code for 11.1 must be sensible.

Screen capture showing the number 600 being entered and then a message
displayed saying 3102

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

17

Question Marks

12 1 All marks for AO3 (programming)

1. Correctly checks if a piece belongs to a player;
2. Correctly checks if a piece is a LESS piece;
3. Correct logic for selection structure for a player’s LESS piece and one added to

that player’s victory points if a piece is a LESS piece belonging to that player;
4. Mark points 1 to 3 done for other player;
5. Only adds victory points for LESS pieces if they have not been destroyed;

Max 4 if code contains errors

5

12 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 12.1.
Code for 12.1 must be sensible.

Screen captures showing the correct VP totals for both players (2 for player one and
7 for player two);

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

18

Question Marks

13 1 All marks for AO3 (programming)

1. Creating a new class called RangerPiece; R. other names for class I. case
and minor typos

2. New class inherits from Piece and has a constuctor that overrides base class
constructor with call made to base class constructor; R. if incorrect parameters

3. Constructor sets PieceType to "R"; R. if before call to base class constructor R.
"r"

4. Subroutine called CheckMoveIsValid created that overrides base class
method and correct code for normal move R. if incorrect parameters

5. Selection structure with correct conditions that allow move from forest terrain to
forest terrain;

6. Correct fuel cost returned for all moves (forest to forest, distance of one, illegal
move, distance of one with peat bog as start terrain, distance of one with peat
bog as end terrain);

The following relates to the AddPiece subroutine:

7. Selection structure with correct condition in appropriate place in code which
results in call to constructor for new class;

Max 6 if code contains errors

7

13 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 13.1.
Code for 13.1 must be sensible.

Screen capture(s) showing that two commands were executed and third command
wasn’t followed by grid with R piece in 3rd cell on top row;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

19

Question Marks

14 1 All marks for AO3 (programming)

Marks for changes to the ExecuteCommand method:

1. selection structure with correct condition for burn command;
2. selection structures with correct condition to check that there is lumber in the

player’s supply;
3. returns correct string (A. minor typos, I. case) if player has no lumber;
4. generates a random integer;
5. random integer generated is in correct range;
6. reduces lumber by correct amount;
7. increases fuel by correct amount;

Marks for changes to other parts of program:

8. Returns True from CheckCommandIsValid if burn command was used;

Max 7 marks if code contains errors

8

14 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 14.1.
Code for 14.1 must be sensible.

Screen capture(s) showing that Player One’s lumber has decreased by the same
amount as their fuel has increased; Notes for examiners: due to random numbers
in game exact values can vary; screen capture could show R or S below the B in
the top-left corner of the grid; lumber and fuel both had an initial value of 10.

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

20

Question Marks

15 1 All marks for AO3 (programming)

1. Created new method called GetFogOfWar; R. other names for method I.
case and minor typos

2. Method returns a Boolean value and takes the index of a tile as a parameter; A.
alternatives to passing index of tile eg tile itself I. other parameters

3. Check to see if tile passed as parameter to method contains a piece belonging
to the active player;

4. Gets all the neighbours of the tile passed as a parameter to the method;
5. Gets all the neighbours of the tiles identified in mark point 4 // gets all the

neighbours of the tiles indentified in mark point 4 not already got;
6. Checks at least one neigbouring tile contains a piece belonging to the active

player;
7. Iterative structure that looks at each tile identified as being within two of the tile

passed to the method; A. not all tiles identified correctly
8. Every time a tile is checked the PieceID in the tile is obtained;
9. Returns a value of False if it correctly identifies, for the tiles checked, that the

tile contains a piece belonging to the active player;
10. Method GetFogOfWar returns the correct value under all circumstances;
11. Modified GetPieceTypeInTile so that it calls GetFogOfWar; A.

alternative identifier used as long as match that used for mark point 1
12. GetPieceTypeInTile returns a space character if the value returned by

GetFogOfWar is True;
13. GetPieceTypeInTile returns the piece in the tile if there is a piece in the

tile and a space character if either there is not a piece in the tile or when the
value returned by GetFogOfWar is True; R. if no attempt for either mark
points 11 or 12

Alternative answer for mark points 4, 5 and 7

4. Iterative structure that is used to check every tile;
5. Gets the distance of each tile from the tile passed as a parameter to the method;
7. Gets all tiles within a distance of two from the tile passed as a parameter to the

method;

Note: award mark points 4, 5 and 7 (both methods) for solutions where loop could
terminate early if value of false is returned due to identification of a tile containing
the player’s piece that is within distance of two from tile passed as a parameter to
the method, before all tiles that need to be checked have been identified.

Max 12 if code contains errors or if other parts of the subroutine
GetPieceTypeInTile no longer work correctly

13

15 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 15.1, including prompts on screen capture matching those in
code.
Code for 15.1 must be sensible.

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2021

21

Screen capture(s) showing that for the game from game1.txt the grid is displayed
correctly at the start of both player’s turns;

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

14

Question Marks

16 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
string, has at least one iterative structure and at least one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to swap the positions of vowels in the string,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

12

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

15

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that string concatenation is needed when swapping vowels in the
string // identifying that swapping items in a list of characters is needed.

2. Identifying that a loop is needed that repeats a number of times determined by
the word entered by the user // identifying that a loop is needed that repeats a
number of times determined by the number of vowels in the word entered by the
user.

3. Identifying that two integer variables are needed to store positions of characters
in the string // identifying that an ordered list of vowels in the string needs to be
created // identifying one integer variable is needed to show the distance from
the start and end of the string (R. if no attempt to use this integer with the start
and end positions of the string).

4. Selection structure that checks if a character is a vowel A. more than one
selection structure used R. if no attempt at comparing with each of the five
vowels.

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. Suitable prompt asking user to enter a string followed by user input being
assigned to appropriate variable.

6. Iterative structure that repeats a number of times that is sufficient to check all
the characters in the string.

7. Correctly checks if a character is a vowel.
8. Correctly checks all characters in the string to see if they are vowels.
9. Swaps/moves the position of two characters in the string.
10. Program only moves/changes the position of vowels.
11. Program works correctly if a string contains one vowel and works correctly if a

string contains no vowels. R. if program does not attempt to swap positions of
vowels or identify that there are less than two vowels.

12. Program works correctly under all circumstances.

I. additional loop to get program to repeat multiple times.

DPT. mark points 7 and 8 if only checks for some vowels or includes at most one
non-vowel character.

Max 11 if any errors

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

16

Question Marks

16 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 16.1, including prompts on screen capture matching those in
code.
Code for 16.1 must be sensible.

Screen capture showing the string persepolis being entered and then the string
pirsopeles being displayed and screen capture showing the string darius
being entered and then the string durias being displayed and screen capture
showing the string xerxes being entered and then the string xerxes being
displayed;
I. order of tests

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

19

Question Marks

17 Mark is for AO2 (analyse)

2;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

20

Question Marks

18 1 All marks for AO3 (programming)

1. Iterative structure contains code that gets the choice from the player;
2. One correct condition;
3. Both correct conditions and correct logic;
4. Displays error message under all correct circumstances and only under correct

circumstances;

Max 3 if code contains errors

4

18 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 18.1.
Code for 18.1 must be sensible.

Screen capture showing same message as code for 18.1 displayed when L is
entered followed by D being entered and accepted;

Notes for examiners: ignore contents of the hand and the current score. (B)lasting
cap might be shown in list of choices or might not be. Output after entering D will be
different if a difficulty card was drawn.

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

21

Question Marks

19 1 All marks for AO3 (programming)

1. Creating a new subroutine called GetNumberOfToolCards; R. other
identifiers
I. case I. minor spelling mistakes

2. New subroutine has mechanism to return an integer and returns an integer value;
I. incorrect value A. other numeric data types

3. Iterative structure that repeats a number of times based on the size of Cards;
4. Gets type of card inside iterative structure;
5. Selection structure inside iterative structure that compares (their attempt at) type

of card with at least one of P, F or K;
6. Selection structure with correct conditions and value to return incremented by one

inside selection structure;

The following mark points relate to the PlayGame subroutine:

7. Valid calls to GetNumberOfToolCards or GetNumberOfCards and value
returned by this call is displayed; A. alternative identifier for subroutine if
matches identifier used for mark point 1

8. Appropriate messages displayed along with values returned by calls to
GetNumberOfToolCards and GetNumberOfCards; R. if before display of
current score R. if after display of player’s hand

Alternative answer for mark points 5 and 6

5. Selection structure inside iterative structure that compares (their attempt at) type
of card with Dif;
6. Selection structure with correct condition and value incremented by one inside
selection structure, this value is subtracted from the total number of cards before
being returned to the calling routine;

Alternative answer for mark points 4 and 5

4. Gets score for card inside iterative structure;
5. Selection structure inside iterative structure that compares (their attempt at) score
for card with zero;

Max 7 if code contains errors

8

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

22

Question Marks

19 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 19.1.
Code for 19.1 must be sensible.

Screen capture(s) showing the values of 33 and 28 followed by the values of 32 and
27; (A. alternative values for the second set of numbers if there is evidence that a
difficulty card was drawn from the deck)

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

23

Question Marks

20 1 All marks for AO3 (programming)

1. Create a variable, with an appropriate name and data type, to use to keep track if
there is a blasting cap available and give variable a value of True (or equivalent)
// create a variable, with an appropriate name and data type, to use to keep track
if blasting cap has been used and give variable a value of False (or equivalent);
R. if inside iterative structure that repeats until game is over

2. Selection structure, in appropriate place that checks for the player’s choice being
B (or suitable alternative) and appropriate modified message in GetChoice
subroutine;

3. Selection structure that checks if the player has a blasting cap (or does not have
a blasting cap);

4. If there is a blasting cap (A. incorrect condition) gets the player’s choice of
challenge; R. if value is not of integer data type, unless it is converted to be an
integer before it is used

5. If they chose to use a blasting cap (A. incorrect condition) sets the value of
variable used to indicate if there is a blasting cap to False (or equivalent);

6. Selection structure that checks player’s choice of challenge is less than or equal
to the number of challenges;

7. Selection structure that checks player’s choice of challenge has not already been
met; R. if checks the wrong challenge

8. If conditions for both mark points 6 and 7 are met displays message saying
blasting cap has been used; I. incorrect logic for selection structure(s)

9. Changes the met status of the challenge specified by the player inside selection
structure(s) for mark points 6 and 7; I. incorrect logic for selection structure(s) R.
if changes the wrong challenge

Max 8 marks if code contains errors

9

20 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 20.1.
Code for 20.1 must be sensible.

Screen capture(s) showing that the third condition is met after use of blasting cap
and that use of a second blasting cap is not permitted;
Notes for examiners: ignore messages about number of cards in deck and number
of tool cards in deck.

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

24

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

25

Question Marks

21 1 All marks for AO3 (programming)

Mark points 1 to 9 relate to the TrapCard class.

1. Creating a new class called TrapCard that inherits from DifficultyCard;
R. other names for class I. case and minor typos

2. Constructor calls parent class constructor and then sets Type to Trp //
Constructor sets Type to Trp and sets CardNumber to value of parameter;

3. Subroutine called Process created that overrides parent class method and
contains a call to parent class method (or equivalent);

4. Iteration structure that repeats based on the number of challenges on the
current lock;

5. Selection structure, inside iteration structure, that compares the value of a
challenge’s status with either True or False;

6. Adds challenge / index of challenge to a list if challenge has been met // after
ascertaining that at least one challenge has been met repeatedly selects a
random challenge;

7. Selects a random challenge that has been met; R. if could select a challenge
that has not been met under some circumstances

8. Changes the status of the selected challenge to not met (False); R. if multiple
challenges changed

9. If no challenges have been met then a call is made to the parent class method
(or equivalent); R. if could also set a met challenge’s status to False

10. Modified GetCardFromDeck so that trap cards are processed in the same
way as difficulty cards; R. other messages I. case and minor typos

11. Modified GetCardFromDeck so it displays the message Trap! if a trap card
is drawn; R. other messages R. if message displayed when non-trap card is
drawn I. case and minor typos

12. Modified SetupCardCollectionFromGameFile so that it creates trap
cards instead of difficulty cards;

Max 11 if code contains errors or if other parts of the subroutines
GetCardFromDeck or SetupCardCollectionFromGameFile no longer
work correctly

12

21 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 21.1, including prompts on screen capture matching those in
code.
Code for 21.1 must be sensible.

Screen capture(s) showing that for the game from game1.txt one of the two
challenges that was met is now shown as not met;

1

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2022

26

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

13

Question Marks

22 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
string, has at least one iterative structure and at least one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to test for most of the criteria for a valid string,
although these may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written but
there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

12

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

14

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that an iteration structure is needed that repeats a number of times
based on the length of the string entered by the user.

2. Identifying that nested iteration is needed.
3. Identifying that an integer variable is needed to store the sum of the ASCII

codes and that Boolean variable(s) (A. any suitable equivalent) are needed to
track if there are duplicate characters and non-uppercase characters (R. if no
attempt to use the Boolean variable (or equivalent) to indicate the result of at
least one validation check).

4. Selection structure that checks if two characters in the string are the same R. if
not inside their iteration structure (or equivalent)

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. User input being assigned to appropriate variable.
6. Correctly gets the ASCII code for a character.
7. Adds ASCII code for character to a total.
8. Correctly checks if every character is uppercase. A. checks every character is

not lowercase
9. Correctly checks if a character is duplicated. R. if only checks if a character is a

duplicate for some of the other characters in the string R. if will always say a
character is a duplicate

10. Iteration structure that repeats until string is valid. A. if some validation checks
are missing or incorrect R. if subsequent iterations would not work in same way
e.g. because Boolean variables not reset inside iteration structure

11. Program rejects all strings that are less than five characters or more than seven
characters in length.

12. Program works correctly under all circumstances.

Max 11 if any errors

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

15

Question Marks

22 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 22.1, including prompts on screen capture(s) matching
those in code.
Code for 22.1 must be sensible.

Screen captures showing the string(s) entered and result(s) of each of the tests;
I. order of tests
A. tests done individually or done as one extended test

Note for examiners: example screen captures shown here match the order of the
test data given in the question but there is no requirement for the tests to be done in
any particular order.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

20

Question Marks

23 1 All marks for AO3 (programming)

1. Iterative structure contains code that gets the choice from the player;
2. One correct condition;
3. Both correct conditions and correct logic;
4. Displays error message under all correct circumstances and only under correct

circumstances; R. message same as original prompt

Max 3 if code contains errors

4

23 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 23.1.
Code for 23.1 must be sensible.

Screen capture showing message displayed when 6 is entered followed by 4 being
entered and accepted;

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

21

Note for examiners: Bhukampa might be shown in list of choices or might not be.

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

22

Question Marks

24 1 All marks for AO3 (programming)

Mark points 1 to 6 refer to the new method ProcessBhukampa; mark points 7 to
9 refer to PlayGame.

1. Create a new method called ProcessBhukampa; R. other names for
method; I. case and minor typos

2. Generates two random numbers;
3. Correct range for random numbers generated (0 to 35);

A. 1 to 6 if generating random row/column position instead of position in
Board if these are then used to create two valid square references and will
be able to generate the full range of valid square references
A. 1 to 6 if generating random row/column position instead of position in
Board if these are then used to create an index between 0 and 35

4. Repeats until the two random numbers are different;
5. Swaps positions of two squares in Board list/array;

R. only swapping the pieces that are in the two squares
6. Repeats attempt at (any of) their code for mark points 2 to 5 five times;
7. Call to new method from PlayGame; R. if not in iterative structure that gets

move option from user
8. Selection structure in PlayGame with correct condition (= 8, or equivalent)
9. When bhukampa is chosen, player’s score is decreased by 15 and call made

to DisplayState; R. if (sometimes) executes when bhukampa not chosen

Max 8 marks if code contains errors

9

24 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 24.1.
Code for 24.1 must be sensible.

Screen capture(s) showing option 8 being selected, player one score of 85 and new
board state; A. score of 70 or 55

Notes for examiners: new board state is (partly) random so will not exactly match
the one shown in this mark scheme.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

23

Question Marks

25 1 All marks for AO3 (programming)

Mark points 1 to 6 relate to the Gacaka class.

1. Creating a new class called Gacaka that inherits from Square; R. other
names for class; I. case and minor typos

2. Method called SetPiece/GetPointsForOccupancy created that
overrides parent class method;

3. Message “Trap!” displayed in SetPiece method and piece is added to
Gacaka; R. other messages I. case and minor typos A. added in appropriate
place in PlayGame

4. Value of PointsIfCaptured for piece in Gacaka is increased by 2; A.
making PointsIfCaptured public // new piece added to Gacaka which is
same as original piece except PointsIfCaptured is two higher

5. Value of 0 returned by GetPointsForOccupancy if there is no piece in the
gacaka; R. if always returns a value of 0

6. Value of –3 returned by GetPointsForOccupancy if there is a piece in the
gacaka; A. if only returned for that player’s turn or on both player’s turn R. if
always returns a value of -3

Mark points 7 to 8 relate to the CreateBoard method.

7. An object of type Gacaka is created;
8. The Gacaka object is added to the correct position in the Board list; R. if there

are not exactly 36 objects in the Board list;

Max 7 if code contains errors (including not checking who the piece belongs to)

8

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

24

Question Marks

25 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 25.1.
Code for 25.1 must be sensible.

Screen capture(s) showing the correct final board state, the two player’s scores and
the message Trap! being displayed after the 2nd player’s move; A. alternative
messages if they match 25.1

Note for examiners: Bhukampa might be shown in list of choices or might not be.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

25

Question Marks

26 1 All marks for AO3 (programming)

Mark points 1 to 11 relate to the GetNoOfPossibleMoves method.

1. Creating a new method called GetNoOfPossibleMoves that takes Board /
a list of squares as a parameter R. other method identifiers I. case and minor
typos;

2. Iteration structure that repeats number of times based on size of board list;
3. Nested iteration structures that repeat correct number of times to check every

combination of start and finish squares // nested iteration structures that repeat
correct number of times to look at every combination of start square and legal
move option.

4. Iteration structures that when combined will repeat enough times to check every
combination of move option with the squares from their code for mark points 2
and 3;

5. Calculate the square reference for the start square;
6. Calculate the square reference for the finish square;
7. Calls the CheckPlayerMove / CheckIfThereIsAMoveToSquare

method; A. suitable alternatives to calling method e.g. rewriting code from
method

8. Checks if there is one of the player’s pieces in the start square;
9. Checks if there is one of the opponent’s pieces in the finish square and checks if

the finish square does not contain a piece;
10. Adds one to the count of possible moves when (some) legal moves are found;

Note for examiners: maximum of 1 mark for mark points 8 and 9 if the program
would attempt to use a method/property for a piece in an empty square.
CheckSquareIsValid completes all checks needed for mark points 8 and 9 (if
called twice) but is not easily accessible from the Player class.

Note for examiners: mark points 7 to 9 do not have to be inside iterative structures
to be awarded

11. Call to GetNoOfPossibleMoves in appropriate place in DisplayState
method; A. added to DisplayBoard instead of DisplayState

12. Value returned by GetNoOfPossibleMoves is displayed

Max 11 if code contains any errors

12

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2023

26

26 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 26.1, including prompts on screen capture matching those
in code.
Code for 26.1 must be sensible.

Screen capture(s) showing that there are 52 legal moves for player two;

Note for examiners: Bhukampa might be shown in list of choices or might not be.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

14

Question Marks

27 1 4 marks for AO3 (design) and 8 marks for AO3 (programming)

Mark Scheme

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that meets most of the
requirements. All of the appropriate design decisions
have been taken. To award 12 marks, all of the
requirements must be met.

10–12

3 There is evidence that a line of reasoning has been
followed to produce a logically structured program. The
program displays relevant prompts, inputs the required
data, has at least one iterative structure and at least one
selection structure and uses appropriate variables to
store most of the needed data. An attempt has been
made to test for increasing and decreasing numbers,
although this may not work correctly under all
circumstances. The solution demonstrates good design
work as most of the correct design decisions have been
made.

7–9

2 A program has been written and some appropriate,
syntactically correct programming language statements
have been written. There is evidence that a line of
reasoning has been partially followed as, although the
program may not have the required functionality, it can
be seen that the response contains some of the
statements that would be needed in a working solution.
There is evidence of some appropriate design work as
the response recognises at least one appropriate
technique that could be used by a working solution,
regardless of whether this has been implemented
correctly.

4–6

1 A program has been written and a few appropriate
programming language statements have been written,
but there is no evidence that a line of reasoning has been
followed to arrive at a working solution. The statements
written may or may not be syntactically correct. It is
unlikely that any of the key design elements of the task
have been recognised.

1–3

12

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

15

Guidance

Evidence of AO3 design – 4 points:

Evidence of design to look for in responses:

1. Identifying that an iteration structure is needed that repeats a number of times
based on the number of digits in the number entered by the user.

2. Identifying that selection structures (A. equivalent) for the three possible
outcomes (bouncy, not bouncy, perfectly bouncy) is needed.

3. Identifying that variables with suitable data types are needed to store the
number of digits followed by a larger digit and the number of digits followed by a
smaller digit
(A. any suitable equivalent).

4. Recognising the need to use input as an integer for the indefinite iteration and
as a string to access individual digits // attempting to use remainder division with
a power of ten.

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution works.

Evidence for AO3 programming – 8 points:

Evidence of programming to look for in response:

5. User input being assigned to appropriate variable. A. array of integers as long
as at least 8 digits are allowed.

6. Indefinite iteration with correct condition containing attempt to get user input.
7. Iteration structure that repeats the correct number of times (one less than

number of digits).
8. Compares two consecutive digits.
9. Selection structure with no incorrect contents for when next digit is larger than

current digit. R. if any incorrect conditions.
10. Selection structure with no incorrect contents for when next digit is less than

current digit. R. if any incorrect conditions.
11. Correctly detects that a number with all digits the same is an increasing number

and correctly detects that a number with all digits the same is a decreasing
number // correctly detects that a number with all digits the same is not a bouncy
number

12. Selection structure(s) (A. equivalent) after iterative structure – for the three
possible outcomes (bouncy, not bouncy, perfectly bouncy). A. would output
messages that a perfectly bouncy number is perfectly bouncy and also bouncy.
R. if bouncy number would result in output of perfectly bouncy. R. if no attempt
made to detect bouncy number R. if no attempt made to detect perfectly bouncy
number

Max 11 if any errors

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

16

27 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 27.1, including messages on screen capture(s) matching
those in code.
Code for 27.1 must be sensible.

Screen captures showing the integer(s) entered and result(s) of each of the tests;
I. order of tests

Note for examiners: example screen captures shown here match the order of the
test data given in the question but there is no requirement for the tests to be done in
any particular order.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

19

Question Marks

28 1 All marks for AO3 (programming)

1. Selection structure with correct condition for one boundary;
2. Second correct condition and correct connecting logic; A. second selection

structure
3. Valid set to true if the conditions for allowed values are met; A. any equivalent

method that would ensure that iteration takes place in these circumstances
4. Selection structure(s) added in correct location in code;

Alternative answer

1. Iteration structure modified with correct condition for one boundary;
2. Iteration structure modified with second correct condition;
3. Correct connecting logic for three conditions;
4. Column initialised to value that ensures code in loop executed at least once;

Max 3 if code contains errors
Max 3 if used value 8 instead of GridSize

4

28 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 28.1.
Code for 28.1 must be sensible.

Screen capture showing 1 is entered followed by 10 then 4 when asked to enter
column number again, with 4 being accepted:

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

20

Question Marks

29 1 All marks for AO3 (programming)

1. Create variables for average/total and highest, set to appropriate start values //
creates a list to store all the scores for completed puzzles;
R. if not in appropriate location
A. equivalent variables

2. Compare final score for puzzle to highest score so far;
3. Change highest score found so far if condition for selection structure is met;

A. incorrect condition
4. Calculate new average; A. calculate new total as long as there is an attempt to

calculate average later in the code.
5. Display average and highest scores after iteration structure that checks if the user

wants to do another puzzle; A. inside iterative stucture if also inside a selection
structure that checks that the user does not want to do another puzzle

Max 4 marks if code contains errors

5

29 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 29.1.
Code for 29.1 must be sensible.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

21

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

22

Screen capture(s) showing puzzle1 was used followed by correct high score and
average score;

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

23

Question Marks

30 1 All marks for AO3 (programming)

Mark points 1 to 6 refer to the new method ShiftCellsInRowLeft;
mark points 7 to 11 refer to AttemptPuzzle.

1. Create a new method called ShiftCellsInRowLeft with an integer
parameter; R. other names for method; I. case and minor typos

2. Calculate the index of one cell in the specified row eg for the first cell in a row
(GridSize - Row) * GridSize; A. correct use of GetCell

3. Store a cell in a temporary variable;
4. Iteration structure that repeats based on number of cells in a row (must result in

attempting to inspect all but one cell in a row or attempting to inspect all cells in
a row);

5. Move one cell in Grid one place to the left;
6. Moves the leftmost cell in the row to the end of the row;
7. Modified message about entering 0 to shift and selection structure that

checks if 0 entered; R. if not in iterative structure that gets row from user
8. Gets the row to shift from the user;
9. Call to new method from AttemptPuzzle with correct parameter value;
10. Decrease score by 20; R. if not in selection structure for shifting cells option
11. Display new grid and new current score; R. if before score decreased

Max 2 marks for mark points 2, 4, 6 if actual numeric value used instead of
GridSize

Max 1 mark for mark points 5, 6 if any cell would be lost during the shifting process

Max 10 marks if code contains errors

11

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

24

30 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 30.1.
Code for 30.1 must be sensible.

Screen capture(s) showing the correct final grid state and score for the user;

1

30 3 Mark is for AO2 (apply)

(–1, 0);

1

30 4 Mark is for AO2 (apply)

(GridSize - 1, 0);

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

25

Question Marks

31 1 All marks for AO3 (programming)

Mark points 1 to 7 relate to the CountdownCell class;
mark points 8 to 13 relate to the AttemptPuzzle method.

1. Creating a new class called CountdownCell; R. other method identifiers
I. case and minor typos

2. CountdownCell inherits from BlockedCell and has a constructor;
3. Constructor gives appropriate initial values for timer attribute and Symbol; A.

Constructor gives appropriate initial values for timer attribute only, if
GetSymbol overridden A. using Symbol as the timer if there is evidence of
the numeric value in Symbol being decremented

4. Overrides UpdateCell method;
5. Decrease value of timer by 1 and update Symbol to match;
6. Selection structure that checks if value of timer is now 0 and if so changes

Symbol to @; A. overriding GetSymbol to return @ when timer is 0
7. Symbol doesn’t change again after becoming @ (eg if timer decreases to –1 it

will stay the same); R. if inside selection structure that checks if timer value is
equal to 0, unless other code prevents symbol changing on further iterations R.
if no attempt to update the symbol with the timer values/use the symbol as a
timer

8. Indefinite iteration structure that contains attempt to find an empty cell;
9. Generate random number in correct range; R. if range is based on a specific

size for the grid
10. Checks if cell at random number position is empty;
11. Replaces cell in selected position with a CountdownCell; R. if more than one

cell changed
12. Iteration structure that repeats a number of times equal to the number of cells in

Grid; R. if only works with one size of Grid
13. Call to UpdateCell selected cell; R. if not in iteration structure for mark

point 12

Max 12 if code contains any errors

13

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

26

31 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 31.1, including prompts on screen capture matching
those in code.
Code for 31.1 must be sensible.

1

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

MARK SCHEME – A-LEVEL COMPUTER SCIENCE – 7517/1 – JUNE 2024

27

Screen capture(s) showing that a number 3 appeared in a cell, changed to 2,
then 1, then @;

Note for examiners: the location of the cell that shows a 3 (then 2, then 1, then @)
and the three cells containing Ts (apart from row 1, column 5) are likely to be
different to those shown here.

PMT

13.1 Aspects of software development PhysicsAndMathsTutor.com

	Untitled

